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An acoustic and shock-wave theory of the noise generated by advanced turbo- 
propellers operating at supersonic tip helical velocity and high-subsonic cruise Mach 
number is developed. The theory includes the thickness and loading noise of the highly 
swept propeller blades. When operating at their design conditions these propellers 
radiate extremely intense sound waves. Because of the weakly nonlinear propagation 
effects these high-intensity acoustic disturbances steepen up quickly to form shock 
waves. In the present theory advantage is taken of the fact that in the blade 
fixed-rotating-coordinate system the acoustic and shock-wave fields are time in- 
dependent. The problem is formulated in this coordinate system as a boundary-value 
problem. Weakly nonlinear propagation effects are incorporated into the solution 
following Whitham’s nonlinearization procedure (Whitham 1974). The change in the 
disturbance-propagation velocity due to fluid-particle motion as well as the change 
in the speed of sound resulting from compression and rarefaction are all taken into 
account. It is found that the equal-area rule of Whitham’s shock-fitting method is 
also applicable to the present problem. This method permits easy construction of the 
three-dimensional shock surfaces associated with the acoustic disturbances of these 
high-speed turbopropellers. Numerical results of the present theory are compared with 
the measurements of the JETSTAR flight experiment and the United Technology 
Research Center low-cruise Mach number open-wind-tunnel data. Very favourable 
overall agreements are found. The comparisons indicate clearly that, when these 
supersonic turbopropellers are operated at their high subsonic design-cruise Mach 
number, weakly nonlinear propagation effects must be included in the theory if an 
accurate prediction of the waveform of the sound wave incident on the design aircraft 
fuselage is to be obtained. This is especially true for noise radiated in the upstream 
or forward directions. In the forward directions the effective propagation velocity of 
the acoustic disturbances is greatly reduced by the convection velocity of the ambient 
flow. This allows more time for the cumulative nonlinear propagation effects to exert 
their influence, leading to severe distortion of the waveform and the formation of 
shock waves. 

1. Introduction 
In  recent years, it has been demonstrated, e.g. Dugan et al. (1980)’ that high-speed 

turbopropellers (propfans) offer a significantly higher propulsive efficiency compared 
to that of the high-bypass-ratio turbofan engines used to power the present 
generation of commercial aircraft. However, before the potential fuel savings 
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associated with the high-speed turbopropellers can be realized in practice in future 
aircraft designs, several important technological problems must first be solved. One 
of the more serious problems is the noise generated by these turbopropellers. Because 
these propellers are to be operated at  supersonic blade-tip helical velocity they tend 
to generate intense noise. This could lead to unacceptable levels of discomfort inside 
the aircraft cabin. 

The objective of this work is to develop a theory to calculate the noise field 
generated by these advanced turbopropellers. This theory will include weakly 
nonlinear propagation effects and shock waves. 

The blades of advanced turbopropellers are very thin. For the SR-3 propfan under 
consideration by NASA the blade-thickness to chord ratio is less than 4 % over the 
entire length of the outer half of the blades. One very important consequence of using 
very thin blades is that the flow field in the immediate neighbourhood of the propeller 
is probably linear. Unlike previous-generation propellers the blades of advanced 
turbopropellers are not straight. Instead they have considerable sweep as shown in 
figure 1.  The sweep of the blades provides good aerodynamic performance as well as 
excellent noise reduction characteristics (see e.g. Metzger & Rohrbach 1979; Hanson 
1980b). Owing to the sweep, pressure disturbances generated by different parts of the 
blade are slightly out of phase. When these disturbances arrive a t  an observer they 
will, therefore, tend to cancel each other, leading to significant reduction in the noise 
intensity. 

A t  the present time, several theories are available in the open literature for the 
calculation of the noise associated with advanced turbopropellers, e.g. Hanson 
(1980a, b ) ,  Woan & Gregorek (1978), Jou (1979), Farassat (1975, 1981), Nystrom & 
Farassat (1980), Farassat & Succi (1980). However, all of these are linear theories. 
Although they differ substantially in the procedure of computation (time-domain 
versus frequency-domain calculation) they are all based on the acoustic-analogy 
formulation first used by Lighthill (1952). Lighthill developed the acoustic-analogy 
theory for the purpose of estimating the noise generated by turbulence in jets (see 
also Goldstein 1976). The idea was extended formally to sound generation by solid 
surfaces in motion by Ffowcs Williams & Hawkings (1969). Within the framework 
of the ‘acoustic analogy’ of Lighthill and its extensions by others, all the nonlinear 
effects are lumped together into the quadrupole terms. These quadrupole terms are 
to be treated as inhomogeneous terms of the linear wave equation. Thus external 
input is needed to determine the effects of nonlinearity. The usual practice is to make 
an independent nonlinear calculation t o  estimate these terms. Then the quadrupole 
terms are used as source terms to calculate the acoustic field. 

For the advanced-turbopropeller-noise problem important nonlinear effects can 
arise in two ways. First, if the flow field around the propeller is significantly disturbed 
by the moving blades then nonlinear effects must be taken into consideration in 
calculating the loading on the blade, and its associated radiation field. Second, even 
if the blades do not significantly disturb the flow, different parts of the disturbance 
would propagate with different velocities due to the slight change in the speed of 
sound under compression or rarefaction and different fluid-particle velocities. This 
effect when accumulated over some distance would severely distort the waveform of 
the disturbance, leading to the formation of shock waves. This weakly nonlinear 
propagation effect is well known in sonic-boom problems. Hanson & Fink (1979) used 
the acoustic-analogy theory to estimate the effect of nonlinearities on the acoustic 
field. They found that for thin blades such as those used for propfans the quadrupole 
terms are relatively unimportant. However, it must be pointed out that their estimate 
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FIGURE 1 .  Advanced turbopropeller (propfan). 

is strictly confined to the nonlinearity of the flow field in the immediate neighbourhood 
of the blades. On the other hand recent flight measurements of the acoustic 
disturbances generated by the advanced turbopropellers indicate the presence of 
shock waves in the pressure waveform (see figure 12, also Brooks 1983). These shock 
waves are, therefore, most probably developed as a consequence of weakly nonlinear 
propagation effects. These effects have not been accounted for in all the turbopropeller- 
noise theories currently available in the literature. 

One of the most severe drawbacks of the theories based on the acoustic-analogy 
approach is that external input is needed to determine the effect of nonlinearity. In  
the case of nonlinear propagation effects, the necessary input requires knowledge 
of the nonlinear solution. Of course, if one knows the nonlinear solution already there 
is no need to redetermine i t  through the acoustic analogy. Hence i t  is fair to  say that 
there is no self-consistent way of calculating the nonlinear propagation effects by the 
theories predicated on the acoustic analogy of Lighthill and others. More recently 
Tam & Burton (1984) succeeded in developing a supersonic-jet-noise theory starting 
from the equations of motion of a compressible fluid without the use of the acoustic 
analogy and the concept of quadrupoles. Thus i t  appears that  even in the case of the 
jet-noise problem the use of the acoustic-analogy approach is not only not necessary 
but also possibly not even appropriate. 

I n  this paper, the problem of the acoustic field generated by a supersonic 
turbopropeller is formulated and solved as a boundary-value problem with the 
equations of motion of an inviscid compressible fluid as the governing equations. To 
facilitate the solution of the problem a blade-fixed cylindrical coordinate system is 
used. In  this (rotating) blade-fixed-coordinate system the disturbance field is time 
independent so that the solution is a function of the spatial coordinates alone. To 
simplify the problem further, the thin-airfoil approximation is adopted. This 
approximation allows the boundary conditions to be prescribed on the mean-blade 
surface instead of the actual surface of the blade. This approximation is justified since 
the thickness-to-chord ratios of the blades of advanced turbopropellers are, indeed, 
very small. Because these turbopropellers have high sweep and very thin blades, 
nonlinear effects of the flow field in the immediate neighbourhood of the propellers 
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are known to be relatively unimportant. I n  this work, therefore, only the linearized 
boundary-value problems corresponding to the thickness noise and the loading noise 
are solved in the blade-fixed-coordinate system. 

The linear thickness- and loading-noise problems of advanced turbopropellers, as 
mentioned before, have been solved previously by a number of investigators. Explicit 
near- and far-field solutions have recently been given by Hanson (1985) in retarded 
coordinates. Hanson developed these solutions by the acoustic-analogy theory. For 
the purpose of calculating the linear sound field the use of the acoustic-analogy theory 
and the retarded coordinates appear to provide numerical results identical with the 
present approach involving the solution of the equations of motion of an inviscid 
compressible fluid in a blade-fixed-coordinate system. Significant differences arise, 
however, when weakly nonlinear effects are to  be accounted for. I n  the acoustic- 
analogy theory these effects are, in principle, lumped into the quadrupole terms and 
are therefore difficult, if not impossible, to  recover. Moreover, it is found that, if 
three-dimensional weak shocks are to be added to the solution, the shock-fitting 
procedure can be carried out most efficiently (or is practical) only if a blade- 
fixed-coordinate system is used. 

To incorporate the weakly nonlinear propagation effects on the linear solution, 
Whitham’s nonlinearization procedure is employed (Whitham 1974, chapter 9). The 
change in disturbance-propagation velocity due to fluid-particle motion as well as 
the change in the speed of sound resulting from compression and rarefaction are all 
taken into account. The nonlinearized solution causes the waveform to steepen in the 
compression phase of the acoustic wave. This process leads to the formation of weak 
shocks. It is shown that the equal-area rule of Whitham’s shock-fitting method is 
applicable to  the present problem. By carrying out these procedures in the blade- 
fixed-coordinate system the three-dimensional shock surfaces associated with the 
acoustic field of an advanced turbopropeller are constructed. 

Prior to the present work Hawkings & Lowson (1974) investigated the weakly 
nonlinear steepening effects of sound generated by an open supersonic rotor. Later 
Barger (1980) considered the general case of a rotor moving with a constant forward 
velocity. In  Barger’s analysis, however, the choice of coordinate system is such that 
the sound-field pattern is unsteady so t h a t  the cumbersome procedure of determining 
the ray-tube areas must be carried out before the shock-fitting process can be applied. 
Because of this the construction of t h e  three-dimensional shock surfaces associated 
with each propeller blade becomes extremely difficult and complicated. In the present 
approach such difficulty is totally eliminated by the use of the blade-fixed-coordinate 
system. 

Numerical results for the noise of t h e  SR-3 turbopropeller are presented in $6. The 
calculated pressure waveforms at the design-cruise condition (cruise Mach number 
= 0.8) are compared with the flight mcasurernents of the JETSTAR program. Very 
favourable agreements are found. Additional comparisons between calculated 
results and experimental waveforms measured in the United Technology Research 
Center open wind-tunnel facility have also been carried out. Since the open wind 
tunnel can only be run at low subsonic speed (Mach number < 0.323) the turbopropeller 
was operated a t  an off-design environment in these tests. The agreement between the 
theoretical results and measurements is again found to  be quite good. However, the 
weakly nonlinear propagation effects are less significant at this off-design operating 
condition. The importance of nonlinear propagation effects a t  the design-cruise Mach 
number is evaluated by examining t h c  shock-formation distance as a function of the 
direction of propagation. Nonlinear distortion of the waveform in selected directions 



Acoustic and shock-wave theory of turbopropeller noise 131 

is presented. The time history as well as the propagation of weak shocks and the 
subsequent evolution of the waveform as a function of radial distance from the 
turbopropeller are described. It is found that nonlinear propagation effects are 
especially important for noise radiation in the upstream or forward direction. 
Significant distortion of the waveform occurs over the first few diameters from the 
turbopropeller. A physical explanation of this finding is provided at the end of the 
paper. 

2. Formulation 
Consider a coordinate system (z, y, z )  the z-axis of which coincides with the axis 

of the turbopropeller as shown in figure 1 .  This coordinate sytem is stationary relative 
to the wing and fuselage of the aircraft on which the turbopropeller is mounted. In 
this coordinate system the linearized equations of motion of an inviscid compressible 
fluid are 

2+ u,-+p, v-v = 0, 
at aZ 

p = a2,p. 

Equations (2.1) and (2.2) are the linearized continuity and momentum equations. 
Here p,  v and p are the perturbation density, velocity and pressure, respectively. U,, 
pa, and a, are the cruise velocity of the aircraft, the ambient density and the speed 
of sound of the fluid. For irrotational fluid motion the velocity field can be expressed 
in terms of a velocity potential @ defined by 

v = V@. (2.3) 

Substitution of (2.3) into (2.2) gives the following relationship between p, the 
pressure, and @, 

On eliminating the density p in (2.1) by means of the isentropic relation p = a L p  
and p by (2.4), a single equation for @ is found, 

i a  
a: (at m,a,)' 

vv-- -+u - @ = O .  

Equation (2.5) will be used for the determination of the acoustic field associated with 
the thickness distribution of the blade. This is often referred to as the 'thickness 
noise'. To calculate the noise field associated with the loading on the blade it would 
be more convenient to use p, the pressure, as the dependent variable. The governing 
equation forp is obtained by differentiating equation (2.5) by @/at) + U,(a/az). Upon 
using equation (2.4) it is easy to find that p satisfies the same equation as @, i.e. 

To calculate the radiated acoustic field it is advantageous to rewrite (2.5) and (2.6) 
in a blade-fixed (rotating) coordinate system. Let (r ,O, ,z)  be the cylindrical 
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FIGURE 2. Schematic drawing showing the pitch-change axis of the mth blade 
and the intersection of thp blade and the cylindrical surface r. 

coordinates of the stationary-coordinate system and ( r ,  8, z )  be those of the blade- 
fixed-coordinate system. If o = 06, (& is the unit vector in the z-direction) is the 
angular v-elocity of the propeller (see figure 1 )  then 

8 = e,-wt. (2.7) 

I n  the blade-fixed-coordinate system all physical quantities of the flow are time- 
independent or functions of ( r ,  8, z )  alone. Thus on using (2.7) it is straightforward 
to derive the following transformation of derivatives 

a a a  a 
at at?’ ao, ae +-. -+-(*)- - 

By means of the above transformation, (2.5) and (2.6) may be written as 

(2.8a, b )  

2.1. Blade geomttry and local coordinates 
For convenience of prescribing boundary conditions on the surface of the blades, a 
set of local coordinates is adopted. Consider the mth blade of the turbopropeller as 
shown in figure 2. Let r be the curved surface of the circular cylinder of radius r .  
The thickness distribution of the blade is prescribed on the intersection of surface 
r and the blade. This is shown in figure 3. Figure 3 is essentially surface r laid flat 
on a plane parallel to  the z-axis and perpendicular to the pitch-change axis a t  z = 0. 
The velocity diagram of the incoming flow as seen by the blade on surface r is also 
given in this figure. The incoming undisturbed velocity has a velocity vector equal 
to U ,  &,-ur&,, where gZ and 2, are unit vectors in the z- and 8-directions. To describe 
the geometry of the mth blade a set of local coordinates ( r ,  Ern, ern) as shown in figure 3 
are used. The origin of the Ern and 5, coordinates is a t  a distance q(r )  from the 
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pitch-change axis of the blade. These local coordinates are related to  the blade-fixed 
cylindrical coordinates ( r ,  8, z )  by 

( r  = r ) .  (2.11) 

r 

cm = [Zw+(e-s, )  U,-?/Jw] ( UZ, + w2r2)t 

6 ,  = [ - z U , + r 2 ( 8 - 8 , ) w + v U , ]  

or 

1 
( V, + o2r2)t 

In  the above equations, Om is the &coordinate of the pitch-change axis of the mth 
blade and v ( r )  is related to  the face alignment of the blades. The face alignment is 
usually very small and changes extremely slowly in the radial direction. For the SR-3 
turbopropeller i t  is very small. For simplicity, it will be set equal to  zero in the 
calculation. In  what follows it will be assumed that dq/dr is small (i.e. dy/dr 4 1 ; 
this is true in practice) and can be neglected as a first approximation. Now if (2.9) 
is rewritten in terms of the local coordinates ( r ,  E m ,  C m ) ,  the left-hand side becomes 

(2.12a, b )  

This form of (2.9) will be useful later on. 
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2.2. Boundary-value problem for the thickness noise 
Within the framework of the thin-airfoil approximation, each blade of the turbo- 
propeller can be replaced by a thickness distribution (sources and sinks) and a loading 
distribution on the mean blade surface 6,  = 0. To linear order the noise associated 
with the thickness distribution and that of the loading distribution are uncoupled 
so that they can be solved separately. 

Let us first consider the thickness-noise problem. I n  this case the thickness of the 
blade is taken to  be distributed symmetrically about the mean blade surface 5, = 0. 
Now the boundary condition on the turbopropeller requires that the relative velocity 
component normal to the surface of the blade be equal to zero. If h(<,,r) denotes 
the thickness distribution of the blade (see figure 3), then this boundary condition 
when expressed mathematically gives 

( U , e , - O r & 8 + V ~ ) . V ( ~ m f h ( < m , r ) )  = 0 as C m + O + .  (2.13) 

Within the thin-airfoil approximation it is permissible to satisfy boundary condition 
(2.13) on the mean blade surface f;, = 0 instead of the actual blade surface as is indi- 
cated. On retaining linear-order terms only it is easy to  show that (2.13) simplifies to 

(2.14) 

I n  other words a@/agm has a discontinuity or jump a t  the mean blade surface. This 
jump condition may be rewritten as 

(2.15) 

The thickness-noise problem, therefore, consists of finding a solution to  equation 
( 2 . 9 ~ )  and the jump condition (2.15) for m = 1,2,3, ..., B, where B is the total 
number of blades. Equation ( 2 . 9 ~ )  and the jump condition can, however, be cast into 
a single inhomogeneous equation. It is easy to find that the required inhomogeneous 

where S(5,) is the delta function. To show that (2.16) is the correct equation for the 
thickness-noise problem, first, it  is to be noted that away from the mean blade 
surfaces this equation is the same as equation ( 2 . 9 ~ ) .  To recover the jump condition 
(2.15) one can integrate (2.16) with respect to cm from 5, = - e  to E and let E + O .  
On using the property of the delta function the right-hand side of (2.16) becomes the 
right-hand side of (2.15) upon integration and taking the limit E + 0. Next replace 
the left-hand side of (2.16) by ( 2 . 1 2 ~ ) ;  upon taking into account the fact that @ is 
continuous it is straightforward to  find, in the limit E + 0, all the terms drop out 
except the second term. This term reproduces the left-hand side of (2.15) and hence the 
jump condition. Thus to find the acoustic field associated with the blade-thickness dis- 
tribution it is only necessary to solve (2.16) with boundedness or outgoing wave condi- 
tion far away from the propeller. Instead of the velocity potential @ the equation 
for pressure, p ,  can be obtained by differentiating (2.16) by p, (  U,(a/az)-w(d/dU)) 
and using (2.4), 
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2.3. Boundary-value problem for the loading noise 
To calculate the acoustic field generated by the loading on the blades it will be 
assumed that the pressure difference on the two sides of the blades is known. By the 
thin-airfoil approximation this may be regarded as a prescribed pressure jump on the 
mean blade surface Cm = 0. That is, 

for m = 1,2 ,3 ,  . . ., B,  where L(Em, r )  is the given loading distribution on the mth 
blade. Therefore, the loading-noise problem consists of solving equation (2.9b) for p 
together with jump condition (2.18). Again by introducing the delta function it is 
possible to incorporate equation (2.9b) and jump condition (2.18) into a single 
inhomogeneous equation, which is 

(2.19) 

To show that the solution of (2.19) satisfies jump condition (2.18) it  is only necessary 
to integrate (2.19) twice with respect to em. The upper and lower limits of the second 
integration are f l m  = + E  and Crn = --E. On using (2.12b) and noting that 

J a ( c m )  cmdcm = 0, 

it is straightforward to recover pressure-jump condition (2.18) in the limit E + 0. The 
construction of the solutions of (2.17) and (2.19) will be carried out in the next section. 

3. Linear solution 

geneous equation of the form 
Both the thickness and the loading-noise problems are governed by an inhomo- 

For the thickness-noise problem the inhomogeneous term on the right-hand side of 
(3.1) isgivenby thatof (2.17), whereasfortheloadingnoiseitisgivenby theright-hand 
side of (2.19). Equation (3.1) together with boundedness or outgoing wave condition 
as 121, r + 00 can be solved by first applying Fourier transform to the variable z and 
then expanding the solution as a Fourier series in 8. In the following the Fourier 
transform of a function will be denoted by an overbar and the nth Fourier component 
will be labelled by a subscript n as 

and 

1 m  
p(r ,  8,  k )  = - 2n 

p ( r ,  8,  Z) e-ikz dz, 

m 

p ( r ,  8, Z) = 

P(r ,  8, k )  = X p n ( r ,  k) cine, 

p(r,  8,  k )  eikz dk,  
-cc 

co 

n--cc 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 3 4  

2K 

Pn(r,  k) = j p(r ,  8 ,  k )  ecined0. (3.3b) 
2n 0 
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Equation (3.4) can be solved by the use of a Green function G(r,s)  satisfying the 
inhomogeneous equation 

(kl:,-on)' n2] 
-+--- +- G =  S(r-s) .  
dr2 r d r  4% r' 

(3.5) 

It is easy to  construct the Green function G(r,  s) in terms of modified Bessel functions 
of order n, I, and K ,  : 

--I, (( k2- ,,.) 
( k U ~  - on)2)' ,s) K ,  (( k2 - (Icu, 

a: a: 

a', a: 

(kU, - wn)?: r ) K ,  (( k2-  (kUm - on)'); 8) - sI, (( k2 - 
C ( r , s )  = 

To ensure that the boundedness or outgoing wave condition is satisfied as r + 00 the 
branch cuts of the square-root function in the arguments of the modified Bessel 
functions are taken so that 

in the complex k-plane. The branch points are a t  

wn k + = -  
- a, l+M,'  

(3.7) 

(3.8) 

where M ,  = U,/a, is the free-stream or cruise Mach number. The branch cuts 
together with the k-inversion contour in the complex k-plane are shown in figure 4. 

By means of G(r , s )  the solution for @,(r ,k)  in the acoustic radiation field r > b ;  
b = length of the turbopropeller blade. is 

where (3 .8b)  

Upon inverting the Fourier transform and summing over the Fourier components the 
solution of (3.1) is found to be 

(kU,-wn)2 ;f 

a: ) r),u(n, k) ein8+ikzdk. (3.9) 

In  the acoustic far field, (3.9) can be further simplified. Let (R,  2,O) be the spherical 
polar coordinate of a coordinate system whose polar axis coincides with the z-axis. 
These coordinates are related to ( T ,  0.2) by 

z = R cosx. r = R sinx (0 = 0). 
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Substitution of the above into (3.9) and using the asymptotic form of the modified 
Bessel function it is easy to find 

) sinX+ik cosx R+inO p(n ,  k ) d k  
X a2, 1 1  (R D b ) .  

a: (3 .10)  

The k-integral in (3.10) can now be evaluated asymptotically by the method of 
stationary phase. This gives 

(kU,-wn)2 
exp { [ - ( k2 - 

(k2 - (kU, - on)2>: 

(3.1 1 a) 

where 

p(n,k,), (3.11b) 
7c W 

n--, (1 - M2, sin2 x): 

and k, is the stationary phase point (k = k,) given by 

(3 .12)  
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3.1. Thickness noise 
For the thickness-noise problem i t  is easy to find upon substituting the right-hand 
side of (2.17) forf(r,O,z) the following formula for ,u(n,k,) of (3.11), 

x exp { - i(k, z + no)} dz do, (3.13) 

where J ,  = Bessel function of order n. The subscript T in (3.14) denotes the 
thickness-noise component. To evaluate t,he double integral of (3.13) it  is advantageous 
to perform an integration by parts on z and 8 first. This effectively replaces the 
operator (U,(a/az)-w(a/a6)) in the integrand by the factor i( U ,  k,-wn). After 
integration by parts the double integration can be carried out by changing the 
integration variables from r dz dB to d<, dfm. Both integrations cover the same curve 
surface of the circular cylinder of radius r .  On substituting z and 8 of the exponential 
function of the integrand of (3.13) by the expressions given in (2.10), the integral over 
the delta function S(5,) can readily be evaluated giving 

The integral which appears as the last, factor of (3.15) has the same value for all the 
blades. Further, since the thickness function of the airfoil sections used for 
turbopropeller blades are polynomials (or can be closely approximated by polynomials) 
the integral can be determined in closed form. To display the sweep of the blade 
explicitly a change of integration variables from f ,  to t is made, see figure 5. These 

(3.16) 
variables are related by 

where xc is the distance between the leading edge of the blade and the centre of 
gravity of the airfoil section. This leads to 

Em = Xc-D(')-t, 

where C is the chord width. 

loss of generality em may be taken to be 
Now the blades of the turbopropeller are spaced a t  equal intervals so that without 

2n(m-- 1 )  
B '  

em = 

The summation over m of (3.15) may easily be carried out by noting that 

(3.18) 

B ( n =  0, f B ,  f 2 B  ,... ), 
B 0 (otherwise). 

B 

m-1 

z exp{-i 
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I - - 

FIGURE 5. Airfoil section of turbopropeller blade, .& = --D+z,--t. 

It follows, therefore, f, of (3.15) is zero unless n is equal to an integral multiple of 
B, i.e. n = NB where N is an integer. Hence 

f,(r, k,) = -% ( U ,  k, - wn) ( UZ, + 02r2)i 

U ,  ks - wn 
xexp{ -i[k,q+ 

xexp{ -i[(g"pc;i]t}dt8,,NB = Kronecker delta). (3.19) 

From (3.19) i t  can be seen that, because of the blade sweep D(r)  and the phase 
alignment q(r) ,  two-phase factors are introduced into the solution. These phase 
factors when integrated over r result in rapid cancellation of the radiated noise as 
was noted previously by Hanson (1980a, b ) .  Equations (3.19), (3.14) and (3.11) 
constitute the solution of the thickness-noise problems. They will be used for 
numerical computation in $6. 

3.2. Loading noise 
For the loading-noise problem the inhomogeneous term of (3.1) is given by that of 
(2.19). On proceeding as in the case of thickness noise it is straightforward to find 
that the corresponding formulas for the loading noise are (subscript L denotes loading 
noise) 

where 

The total noise field generated by the turbopropeller is the sum of the thickness 
noise and the loading noise. Quantitatively it is given by replacing p(n ,  k,) in (3.11) 
by the algebraic sum of pT and pL, that is, 

p(n ,  k,) = p d n ,  4 )  +p,(n,  ks) .  (3.22) 

The ps are complex quantities so that the two noise components may reinforce or 
cancel each other depending on their relative phases. Clearly, from (3.11) the 
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magnitudes of the Nth blade-passing harmonic of the total, thickness and loading 
noise are given by 2h/R( 1 - MZ, sin' x); multiplies the absolute values of p, pT and 
pL with n = NB respectively. Thus to find the spectrum of turbopropeller noise i t  
is only necessary to compute the absolute values of p a t  all the blade-passing 
harmonics. 

4. Nonlinearization 
The acoustic field generated by an advanced turbopropeller as given by (3.11) has 

the form 
( 4 . 1 ~ )  

where v(x)  = U ,  cosx+(aZ,- UZ, sin2X)1. (4.lb) 

On replacing 0 by (O,-wt),  see (2.7), it is readily seen that the quantity v(x) has the 
physical meaning of being the radial propagation velocity of the acoustic disturbances 
at  a polar angle x (in the stationary or non-rotating coordinate system). This 
propagation velocity is determined by the speed of sound, a,, and the convection 
velocity of the free-stream fluid, U,. In  (3.11) the quantity w(x) was derived by the 
method of stationary phase. I n  order to  gain a better insight into why the propagation 
velocity of acoustic disturbance is given by (4.1 b), here it will be rederived by purely 
geometrical and physical reasonings. 

Consider an acoustic disturbance which in the absence of the uniform flow, U,, 
would be propagating radially in a direction with polar angle (x+v). In  the plane 
containing the radial vector a t  polar angle (x + v) and the z-axis the velocity-vector 
diagram for the acoustic disturbance is as shown in figure 6. Because of the convection 
velocity U ,  the acoustic disturbance will not be propagating radially in the direction 
(2 + v). Instead it will propagate in the direction x. From figure 6 it is easy to  find in 
the velocity diagram AB = U ,  cos ;y and A0 = (a: - UZ, sin2 x);. Hence the resultant 
radial propagation velocity, v(x) = OB, is v(x)  = U ,  cosx+ (a: - VZ, sin2x): in 
agreement with the result obtained by the method of stationary phase. 

Now if weakly nonlinear propagation effects are to be included the speed of 
propagation of the acoustic disturbance in the radial direction will be slightly 
modified. The principal effects that are to be accounted for are: 

(i) change in the speed of sound due to compression or rarefaction associated with 
the acoustic disturbance ; 

(ii) increase or decrease in propagation speed due to fluid-particle velocity induced 
by the acoustic disturbance. 

To calculate these two effects let a = a ,  +a' be the speed of sound. The first-order 
correction a' can be determined from the isentropic flow relation. Thus 

(4.2) 

where y is the ratio of specific heats. On replacing a,  by (a ,  +a') in figure 6, it is 
easy to see that the change in the propagation velocity of the acoustic disturbance 
in the radial direction, v', is equal to 

Y - 1  P a' = -- 
2 P a l a m .  

(4.3) 
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FIGURE 6. Velocity vector diagram in a plane containing the z-axis. 

The fluid-particle velocity induced by the acoustic disturbance in the radial 
direction, to the first order, is a@/aR. I n  the far field @ has the same functional form 
as p ,  i.e. 1 -  o R  

R ( v (x )  ) ( R  ” ) .  
@ = - @  -+e,x 

On substituting (4.4) into (2.4) it is straightforward to find 

(4.4) 

(4.5) 

By combining (4.3) and (4.5) the change in radial propagation velocity, AvR, due to  
both effects in terms of the far-field pressure p is 

To incorporate AvR into solution (4.1) the nonlinearization procedure of Whitham 
(1974) (chapter 9) will be adopted here. For a fixed direction x the nonlinearized form 
of (4.1), following Whitham’s method, is 

(4.7) 

where 7(R, 8 , ~ )  is to  be determined from the improved characteristics. Including 
first-order effects, the radial propagation velocity is 

1 
p ( R ,  x, 0 )  = jj F(7, x) > 

dR 
-0- dB = v(x)+Av,. 

On using the expression of (4.6) for AvR, (4.8) may be rewritten as 

(4.9) 

In  (4.9) the form of p is given by (4.7).  Hence, upon integration with respect to R 
the improved characteristics 
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are found. I n  deriving (4.10) i t  has been assumed that a t  the tip of the blade, R = b ,  
the linear solution applies. The implicit solution (4.7) and (4.10), obtained after 
eliminating r ,  constitutes the nonlinearized solution. 

5. Shock fitting 
It is well known that nonlinearized solutions of the form of (4.7) and (4.10) most 

probably would lead to  non-uniqueness of solutions as the nonlinearized acoustic 
disturbances evolve in space and time. I n  order to  remove the degeneracy i t  is 
necessary to  include weak shocks as a part of the solution. For each value of r ,  (4.10) 
gives a characteristic curve in the (8, R)-plane. A shock will form when some of these 
characteristics intersect or overlap each other. The formation of a shock usually 
begins when two neighbouring characteristics start to touch each other to form an 
envelope. Consider two neighbouring characteristics T and r + 67. Suppose they touch 
each other at 0 = 8, and R = L, (L,  is the shock formation distance; see figure 7); 
then from (4.10) these characteristics satisfy the following relations: 

Upon expanding (5.2) for small 67 and subtracting (5.1) from it, one finds to order 67 

Hence on equating the terms in the square bracket to  zero a formula for the 
shock-formation distance is obtained. 

Beyond the shock-formation distance i.e. for R > L,, the shock surfaces are three- 
dimensional. However, because F ( r ,  x) i s  periodic in T with period 2x /B  it is, therefore, 
only necessary to  confine attention to the shocks in a single period, that is, the shocks 
associated with one of the blades of the turbopropeller. To construct the three- 
dimensional shock surfaces the simplest approach is to select a direction x and 
consider the evolution of the acoustic disturbances and shock waves in the radial 
direction R as time t increases or as 0 decreases. The primary advantage of this 
approach is that for a fixed x the shock-fitting procedure can be carried out relatively 
easily in the (R, @-plane. After the shocks are determined for the selected direction x, 
the shock-fitting procedure can be repeated for a new value of x. Thus by varying 
x over an appropriate range of angles the development of the shock surfaces in space 
and time can be determined. 

Whitham (1974) outlined in detail how weak shocks can be fitted into a weakly 
nonlinearized solution. For a fixed x. lct r1 and T~ be the characteristics on the two 
sides of the shock in the (R, @-plane. I t  can readily be shown following Whitham that 
the equal-area rule, namely 

7 2  

(5.5) 
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FIQURE 7. The (R,  @-plane showing characteristics 7 and 7+87 
and the shock-formation distance. 

is applicable to the present problem. Equation (5.5) together with the two character- 
istic equations for T~ and 7, (see (4.10)) permit the determination of T1, T~ and the time 
of arrival of the shock, OS(R), at any radial distance R (R > Ls). This information 
when incorporated into the nonlinearized solution of (4.7) and (4.10) provides the 
nonlinearized waveform (with shocks) of the acoustic disturbance as would be 
measured by an observer at (R, x). Numerical results illustrating the steepening of 
the waveform into shocks and their subsequent spatial evolution in the radial 
direction will be provided and discussed in the next section. 

6. Numerical results and comparison with experiment 
In  $3, explicit formulas for the thickness and loading noise generated by a 

turbopropeller, according to linear acoustic theory, were derived. The solution to the 
thickness-noise problem is given by (3.19), (3.14) and (3.11). To calculate this noise 
component the first step is to input the geometry of the blades through (3.19). It turns 
out for the SR-3 propfan that the blade-thickness distribution h(t,  T )  at any radial 
location r has a simple polynomial representation in t plus a square-root t term for 
the leading edge. On substituting this representation of h into (3.19) the integral there 
may be evaluated analytically. The next step in the calculation is to use this 
analytical expression of f, to determine the complex amplitude of the Nth blade- 
passing harmonic, p T ( N ,  ks) ,  for a given direction of noise radiation, x, according to 
(3.14). The integrand as a function of T of the integral in this equation is very 
complicated. However, it can easily be computed numerically. In the integrand, the 
Bessel function is highly oscillatory when N is large or for the higher harmonics. To 
ensure sufficient numerical accuracy in the integration, the size of the integration step 
is taken to vary with N so that there are at least twenty steps within one period of 
oscillation. The Bessel functions J ,  are generated following the procedure described 
in a paper by Tam (1983). The solution of the loading-noise problem is given by (3.21), 
(3.20) and (3.11). The computation of this noise component is carried out in a similar 
manner to the thickness noise. To obtain the waveform (pressuretime history) of 
the turbopropeller noise, the complex amplitudes of the different blade-passing 
harmonics of the thickness and loading noise are first combined according to (3.22). 
The summation over n in (3.1 1 b) is then carried out using the method of fast Fourier 
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transform in much the same way as discussed by Tam (1983). A computer program 
implementing all the above computation steps has now been developed. The input 
to the computer program consist of t h e  cruise Mach number (U,/a,), the blade-tip 
rotational Mach number (wbla,, where b is the length of the blades), the geometry 
of the blades and the loading distribution on the blades. For a specified direction of 
radiation, x, the program computes the thickness, the loading and the total noise 
spectra as well as the pressure waveform. 

To incorporate the weakly nonlinear propagation effects into the numerical 
solution the nonlinearized characteristic (4.10) is used. In  this equation the waveform 
function F(7,  x) is calculated according to the linear acoustic theory described above. 
To determine the nonlinearized pressure waveform a t  a given distance R (R > b )  the 
relationship O ( T )  is computed by (4.10). Since F ( T , x )  is already known, the 
nonlinearized waveform F ( 0 ,  x) is obtained. For R greater than the shock-formation 
distance, the nonlinearized waveform is multivalued. To reduce the waveform to a 
single-valued function a weak shock is fitted in the nonlinear waveform following the 
procedure described in $5. A simplc way to  implement the shock-fitting criteria is 
to  first compute the slope of the chord joining the two characteristics T ~ ,  T~ which mark 
the two sides of the shock. On using (4.10) i t  is straightforward to  find 

Since the right-hand side of (6.1) is known, this equation provides a simple 
relationship between T~ and T ~ .  To determine T~ numerically the value of T1 is adjusted 
by small increments until the equal-area rule of (5.5) is satisfied. On substituting this 
value of T~ into the nonlinear characteristic (4.10), the time of arrival of the shock 
during a typical blade-passing period at  a given radial and angular position can be 
easily calculated. 

Before comparing the present calculated results, including weakly nonlinear 
propagation effects, with the JETSTAR measurements (see Brooks 1983) i t  is worthwhile 
emphasizing that, whereas no ambiguity exists in the determination of the thickness 
noise since the input of this noise component depends on the propfan blade geometry 
alone, the same is not true for the loading noise. At the present time the loading on 
the SR-3 propfan can, a t  best, bc estimated. A semi-empirical lift-coefficient 
distribution (suggested by the manufacturer ; Hanson, private communication) as a 
function of radial distance is used in t hcl present calculation. I n  the work of Hanson 
(1980a, b )  the chordwise loading distribution was assumed to be parabolic and 
symmetric with zero loading a t  the lcading and trailing edge of the blade. It turns 
out for the SR-3 propfan operating at the design condition with cruise Mach number 
0.8 and blade-tip rotational Mach number 0.825, the thickness noise is the more 
dominant component. Because of this the uncertainty in the loading distribution 
introduces only a relatively minor (although not negligible) effect on the predicted 
results. To test the sensitivity of thc predicted noise characteristics to the form of 
chordwise loading distribution, the noise spectra of the SR-3 propfan a t  cruise 
condition at 30000 feet altitude have been calculated for two assumed forms of 
distribution. Figure 8 shows the results a t  x = 73" a t  an observation distance of 2.6 
blade length (this is the design distimce to the aircraft fuselage). The spectrum 
indicated by the lighter lines corrwponds to a symmetric parabolic chordwise 
distribution. The spectrum indicated hy the heavy dark lines corresponds to a linear 
chordwise distribution. In  the linear chordwise loading-distribution model, the 
loading is assumed to be maximum at the leading edge of the blade and decreases 
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FIGURE 8. Spectrum of the total noise for the SR-3 propfan at  cruise condition at  30000 feet 
altitude; R = 2.6 blade length; x = 73'; chordwise loading distribution: -, parabolic; - , linear. 

to zero at  the trailing edge for radial locations up to where the free-stream helical 
Mach number is equal to 0.9. Such a distribution should be a reasonably good 
approximation in the subsonic part of the blade. A t  the tip of the blade the helical 
Mach number is supersonic. Here the chordwise loading distribution is assumed to 
be uniform over the whole chord. In  the region between the triangular and the 
uniform distribution the chordwise distribution is assumed to change linearly in the 
radial direction from one form to the other. As can be seen, for the direction x = 73' 
the parabolic chordwise loading distribution gives higher pressure amplitudes for all 
the first fifteen blade-passing harmonics shown in figure 8. Figure 9 shows a 
comparison of the corresponding waveforms. It is clear that the major difference 
between the two waveforms lies in the magnitude of the negative pressure peak. The 
difference is not completely negligible. It is interesting to point out that this difference 
cannot be realized if one restricts one's attention to the spectrum and especially to 
the fundamental blade-passing harmonic alone as is often done. In  this case the 
difference between the fundamental blade harmonic is only 1.1 dB. 

A t  x = 90" on the other hand, the calculated waveform appears to be not as 
sensitive to the chordwise loading distribution. Figure 10 shows the calculated 
waveform at this angle at the fuselage for the linear as well as the parabolic chordwise 
loading distribution. The gross features of the two waveforms do not differ greatly. 
Figure 11 shows the nonlinearized waveform. Again the gross features of the 
nonlinearized waveforms (with a shock) are nearly identical. In fact, experience 
indicates that for a wide range of angle x the nonlinearized waveform is not very 
sensitive to the assumed form of chordwise loading distribution. With the above 
information it is believed that a comparison between calculated results and the 
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FIGURE 9. Pressure waveform of the noise of SR-3 propfan according to linear theory; x = 73"; 
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FIGURE 10. Pressure waveform of the noise of SR-3 propfan according to linear theory; 
x = 90'; chordwise loading distribution: ----, parabolic; -, linear. 

JETSTAR flight measurements at the x = 90" direction constitutes a very reliable test 
of the validity of the theory. The cornparison is shown in figure 12. The waveform 
of the JETSTAR measurements is takcn from the report by Brooks (1983) (only the 
pressure measurements from the microphones mounted on the boom which are not 
shielded by the fuselage boundary layer are used in comparison with calculated 
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FIGURE 11. Nonlinearized pressure waveform of the noise of SR-3 propfan; x = 90'; chordwise 

loading distribution: ----, parabolic; -, linear. 

I-, Oneperiod -4 
FIGURE 12. Comparison of measured and predicted pressure waveforms of the SR-3 propfan at the 
cruise condition at 30000 feet altitude; x = 90'; R = 2.6 blade length; ---, linear theory; -, 
weakly nonlinear theory ; shaded area, JETSTAR measurements (superposition of five sweeps of the 
oscilloscope). 

results). The measured waveform is a combination of five sweeps on the oscilloscope. 
The dotted curve in the figure is the waveform according to the linear theory. The 
full curve is the nonlinearized solution with a weak shock fitted according to the 
equal-area rule. From the figure it can be seen that the linear theory (linear chordwise 
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FIQURE 13. Comparison of measured and predicted pressure waveforms of the SR-3 propfan at the 
cruise condition at 30000 feet altitude; x = 110'; R = 2.6 blade length; ---, linear theory; -, 
weakly nonlinear theory ; shaded area, JETs'rAft measurements (superposition of five sweeps of the 
oscilloscope). 

loading distribution assumed) not only fails to predict the measured shock wave but 
also over-predicts the maximum magnitude of the acoustic pulse. The weakly 
nonlinear results, on the other hand, agree reasonably well with the measurement. 
The steepening of the pressure pulse into a weak shock is correctly predicted. The 
calculated maximum positive pressure at  the back of the shock also agrees better with 
the data than that of the linear theory, indicating that weakly nonlinear propagation 
effects should be taken into account for accurate supersonic turbopropeller noise 
prediction. 

Figures 13 and 14 show the calculated and the measured pressure waveforms of 
the Boom 1 (x = 110') and Boom 4 (x = 7 3 O )  microphone of the JETSTAR flight 
experiment. The Boom 1 microphone was mounted in the upstream or forward 
quadrant of the turbopropeller while the Boom 4 microphone was located in the aft 
quadrant. As can be readily seen both measured pressure waveforms are characterized 
by a shock wave. I n  the forward quadrant the waveform appears to bear a strong 
resemblance to the classical N-wave signature familiar in the sonic boom phenomenon. 
The indication is that  nonlinear effects have exerted a stronger influence on the shape 
of the acoustic pulses radiated in the forward direction than on those radiated in the 
aft direction. On comparing the calculated results and measurements it is easy to see 
that there is very favourable overall agreement between the weakly nonlinear theory 
(with shocks fitted in the solution) and experiment. In  the forward direction, the 
theoretical waveform has a nearly N-wave profile immediately after the shock very 
similar to  the measured data. The maximum positive pressure just behind the shock 
is, however, overpredicted. In  figure 13 the calculated waveform of the linear theory 
is also shown (the dotted curve). It is clear that this waveform does not compare as 
well with the measurement, again reinforcing the belief that nonlinear propagation 
effects cannot be neglected. I n  the aft direction, figure 14, the difference between the 
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FIGURE 14. Comparison of measured and predicted pressure waveforms of the SR-3 propfan at the 
cruise condition at 30000 feet altitude; x = 73"; R = 2.6 blade length; ---, linear theory; -, 
weakly nonlinear theory ; shaded area, JETSTAR measurements (superposition of five sweeps of the 
oscilloscope). 

calculated waveforms based on the linear and the weakly nonlinear theories is small. 
Both appear to compare quite well with the observed data. 

From the calculated and measured results (figures 13 and 14) it is evident that the 
importance of weakly nonlinear propagation effects on high-speed turbopropeller 
noise is a function of the direction of radiation. One way to obtain a rough idea of the 
directional dependence is to examine the shock-formation distance as a function of 
direction. The shock-formation distance due to weakly nonlinear propagation effects 
is given by (5.4). Figure 15 shows the calculated results for the SR-3 propfan operated 
at  cruise condition. These results indicated that in the forward direction especially 
near x = 110" the acoustic pulse from each blade steepens to form a shock almost 
immediately after propagating a short distance from the tip of the blade. In the aft 
directions the shock-formation distance is, however, much longer again, suggesting 
that weakly nonlinear propagation effects would not exert their influence as quickly 
as in the forward directions. From figure 15 it is to be noted that shock waves are, 
for all intents and purposes, confined to the sector 65" < x < 120". Outside this range 
the acoustic intensity is too weak to develop shocks. 

Prior to the JETSTAR flight experiment the noise of the SR-3 propfan was measured 
at the open wind tunnel of the United Technology Research Center (UTRC) (see 
Brooks 1980; Brooks & Metzger 1980). The open wind tunnel, however, cannot be 
operated a t  high subsonic Mach number to match the design cruise condition. Because 
of this, the propfan was overspun so as to keep the helical-tip Mach number the same 
as the design value. It turns out the change in the cruise Mach number is not 
insignificant. One major consequence is that the pressure waveforms of this series of 
simulated tests are somewhat different from those obtained in the JETSTAR experiment. 
Nevertheless, these measured results provide a valuable independent set of supersonic 
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FIGURE 15. Shock-formation distance for the SR-3 propfan at cruise 
condition aa a function of direction of radiation. 

turbopropeller noise data for testing the present theory. Figures 16 and 17 show the 
measured pressure waveforms of two typical runs of the wind-tunnel data. Plotted 
in these figures also are the calculated pressure waveforms, with and without weakly 
nonlinear propagation effects. It is clear from the calculated results that at  this 
low-cruise Mach number the weakly nonlinear effects are not very significant (at the 
distance of the design aircraft fuselage). Both calculated time-history curves compare 
quite well with the measurements for the two test conditions. The major deficiency 
in the theoretical results appears to be the overprediction of the maximum positive 
pressure amplitude. The widths of the pressure peaks are, however, correctly 
predicted. 

In  summary, comparisons between the computed results of the present theory and 
the JETSTAR flight data at a design cruise condition at 30000 feet altitude and the 
UTRC open wind tunnel low-cruise Mach number measurements have been made. 
Overall, reasonably good agreements are found in all cases. At low-cruise Mach 
number weakly nonlinear propagation effects are observed to be not very important 
at distance of the design aircraft fuselage. On the other hand, at high-subsonic-cruise 
Mach number nonlinear propagation effects lead quickly to the formation of shocks 
and strong distortion of the waveform. In the upstream or forward directions the 
pressure waveform immediately after the shock resembles the classical N -wave profile 
of the sonic boom phenomenon. It is found that weakly nonlinear propagation effects 
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RGUFCE 16. Comparison of measured and calculated results for 4-bladed SR-3 propfan; cruise Mach 
number = 0.323; RPM = 11300; x = 93'; R = 2.6 blade length; -@---.-, measurement 
(Brooks & Metzger 1980); -, weakly nonlinear theory with shock; ---, linear acouetic theory. 

must be incorporated into the theory in order to bring the calculated results into close 
agreement with measurements. These effects, at the same distance from the propfan, 
are less pronounced in the aft directions. 

7. Discussion 
Let us now examine physically the conditions under which nonlinear propagation 

effects are important for turbopropeller noise. Obviously, nonlinear effect is important 
only if the noise intensity is sufficiently high. This is the case for supersonic 
turbopropeller. However, aside from the noise intensity one must recognize that 
nonlinear propagation effects are cumulative. That is to say, even a relatively weak 
effect when acting over a long period of time could result in an appreciable 
deformation of the waveform of the sound pulse associated with each blade. To allow 
enough time for weak nonlinearities to exert their cumulative influence it is sufficient 
that either the distance of propagation is long, or the effective speed of propagation 
is small, or both. For a turbopropeller, operating at the design condition, the effective 
velocity of propagation for acoustic disturbances (relative to the propeller) has been 
found to be given by (4 . lb) .  Figure 18 shows a plot of this velocity normalized by 
the ambient speed of sound as a function of direction. It is easy to see that because 
of the free-stream convection velocity the propagation speed is small in the forward 
arc. In  these directions the forward propagation velocity of the acoustic disturbances 
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FIQURE 17. Comparison of measured and calculated results for 2-bladed SR-3 propfan; cruise Mach 
number = 0.323;RPM = 1 1 8 0 0 ; ~  = 93'; R = 2.6bladelength;-@---- , measurement (Brooks 
& Metzger 1980); -, weakly nonlinear theory with shock; ---, linear acoustic theory. 
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FIQURE 18. Calculated propagation velocity of acoustic disturbances in the blade-fixed 
coordinate system as a function of direction; M ,  = 0.8. 
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FIGURE 19. Calculated pressure waveforms of the noise of SR-3 propfan at x = 110' and at an 
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is slowed down by the ambient flow. A t  x = 90" the effective velocity is only 0.6 times 
the ambient speed of sound. Thus one would anticipate that the nonlinear propagation 
effect could be significant, at least, in the forward directions even for observation 
points that are close to the turbopropeller. 

To illustrate the cumulative effect of weak nonlinearities in the propagation of 
turbopropeller noise, the spacetime evolution of the pressure waveforms for the SR-3 
propfan, in the direction x = 1 lo", is shown in figure 19. To focus our attention solely 
on this effect the value of pressure times R (i.e. p R )  is plotted as a function of time 
in units of blade-passing period. The factor R is to account for the amplitude decay 
due to spherical divergence. In this direction calculation based on the present weakly 
nonlinear theory, indicates that a weak shock due to nonlinear propagation effect 
begins to form after the acoustic disturbance has propagated over a distance of about 
a fifth of the blade length measured from the blade tip. At a distance of two blade 
lengths, from the centre of the propfan, a well-defined shock, as shown in figure 19, 
is established. As the acoustic pulse continues to propagate, the positive part of the 
sound pulse quickly evolves into the classical N -shape configuration. The maximum 
pressure decreases continually as the radial distance increases. Based on the results 
shown in this figure i t  is clear that, for aircrafts with multiple-propeller system, the 
use of a weakly nonlinear turbopropeller-noise theory is necessary to obtain an 
accurate prediction of cabin-interior noise. This is especially so for the noise 
contributions from the outer propellers, since the noise from these propellers has to 
travel over a somewhat longer distance to reach the fuselage. 

This work was supported by the Independent Research and Development program 
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